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1. Introduction

The gut microbiota, containing trillions of bacteria, 
archaea, fungi and yeasts, and bacteriophages and 
viruses, has been shown over the past decades to play a 
crucial role in health and disease (Matijasic et al., 2020; 
Vemuri et al., 2020). Diseases and disorders affected by 
the gut microbiota range from those occurring in the 
gastrointestinal (GI) tract, where these micro-organisms 
reside, to diseases elsewhere in the body. The diseases of 
the GI tract include inflammatory bowel disease (IBD) 
(Lavelle and Sokol, 2020), irritable bowel syndrome (IBS) 

(Collins, 2014) and colorectal cancer (CRC) (Fan et al., 
2021). Systemic diseases and disorders include, amongst 
others, allergy of skin (Petersen et al., 2019) and lungs 
(Barcik et al., 2020), obesity and associated cardiovascular 
diseases (Marzullo et al., 2020), type I diabetes (Verduci et 
al., 2020) and other autoimmune diseases (Reyes-Castillo 
et al., 2021), and even phenomena related to the brain, 
such as brain development and cognition (Almeida et al., 
2020), Parkinson’s and Alzheimer’s disease (Ceppa et al., 
2020), and autism spectrum disorders (MacFabe, 2015). 
Although the full spectrum of mechanisms by which the gut 
microbiota interacts with the host are still being discovered, 
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The gut microbiota has been indicated to play a crucial role in health and disease. Apart from changes in composition 
between healthy individuals and those with a disease or disorder, it has become clear that also microbial activity is 
important for health. For instance, butyrate has been proven to be beneficial for health, because, amongst others, 
it is a substrate for the colonocytes, and modulates the host’s immune system and metabolism. Here, we studied 
the effect of a blend of three mushrooms (Ganoderma lucidum GL AM P-38, Grifola frondosa GF AM P36 and 
Pleurotus ostreatus PO AM-GP37)) on gut microbiota composition and activity in a validated, dynamic, computer-
controlled in vitro model of the colon (TIM-2). Predigested mushroom blend at three doses (0.5, 1.0 and 1.5 g/day 
of ingested mushroom blend) was fed to a pooled microbiota of healthy adults for 72 h, and samples were taken 
every day for microbiota composition (sequencing of amplicons of the V3-V4 region of the 16S rRNA gene) and 
activity (short-chain fatty acid (SCFA) production). The butyrate producing genera Lachnospiraceae UCG-004, 
Lachnoclostridium, Ruminococcaceae UCG-002 and Ruminococcaceae NK4A214-group are all dose-dependently 
increased when the mushroom blend was fed. Entirely in line with the increase of these butyrate-producers, the 
cumulative amount of butyrate also dose-dependently increased, to roughly twice the amount compared to the 
control (medium without mushroom blend) on the high-dose mushroom blend. Butyrate proportionally made up 
53.1% of the total SCFA upon feeding the high-dose mushroom blend, compared to 27% on the control medium. In 
conclusion, the (polysaccharides in the) mushroom blend led to substantial increase in butyrate by the gut microbiota. 
These results warrant future mechanistic research on the mushroom blend, as butyrate is considered to be one of 
the microbial metabolites that contributes to health, by increasing barrier function and modulating inflammation.
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it is clear that the microorganisms influence our immune 
system and metabolism (Backhed et al., 2004; Geurts et al., 
2014), through e.g. interacting directly with immune cells, 
modulating gene expression in a variety of tissue, and/or 
production of metabolites which are absorbed through the 
gut epithelium and transported to distant organs through 
blood and lymph systems.

One of the metabolites produced by the gut microbiota 
that has received a lot of attention is butyrate. Butyrate is 
one of the short-chain fatty acids (SCFA), the others being 
acetate and propionate, which are organic acids produced 
within the lumen of the colon by the gut microbiota mainly 
through fermentation of undigested/indigestible dietary 
carbohydrates (Blaak et al., 2020). Undigested/indigestible 
dietary and endogenous protein, such as the protein-part 
of mucus, and sloughed epithelial cells, can be fermented 
into SCFA and branched-chain fatty acids (BCFA) (Topping 
and Clifton, 2001). Butyrate is considered to be health-
promoting, as it has been shown to have anti-carcinogenic 
and anti-inflammatory effects, and it strengthens the 
gut barrier function (Hamer et al., 2008). Its production 
from carbohydrate fermentation is thought to be more 
important for health than from protein fermentation, as 
protein fermentation also leads to various putrefactive 
metabolites, which are considered to be toxic to the host 
(Macfarlane and Macfarlane, 2012).

A prebiotic is defined as ‘a selectively fermented ingredient 
that results in specific changes in the composition and/or 
activity of the gastrointestinal microbiota, thus conferring 
benefit(s) upon host health’ (Gibson et al., 2017). Where in 
the past ‘prebiotic’ was synonymous to ‘bifidogenic’ (increase 
in Bifidobacterium) effects (Gibson and Roberfroid, 1995), 
the latest definition also allows room for health benefits 
related to microbial activity (amongst other production 
of SCFA).

Mushrooms have been the subject of intense research due 
to their bioactive components. Medicinal mushrooms have 
been used for centuries in Asia, originating in China, and 
are currently still applied as traditional Chinese medicine 
(TCM) (Martel et al., 2017; Zhou et al., 2019). Mushrooms 
produce a large number of pharmaceutically active proteins, 
which have become popular sources of natural antitumor, 
antimicrobial or immunoenhancing agents (Zhou et al., 
2019). Moreover, polysaccharides and some small-molecule 
components, such as flavones, other polyphenols and 
terpenes, are present in mushrooms, and these may interact 
with the (immune system of the) host or its gut microbiota 
(Jayachandran et al., 2017). Carbohydrates are the major 
components in mushrooms, accounting from 35 to 70% of 
the dry weight, with variations in different species. Among 
these are polysaccharides, such as β-glucans, consisting 
primarily of β-(1→3) linkages with some β-(1→6) branches, 
as well as hetero-polysaccharides containing mannose, 

galactose, fucose, xylose and rhamnose. Mushroom 
polysaccharides have been shown to possess a variety 
of therapeutic and gut microbiota modulation benefits 
(Cheung, 2013; Ruthes et al., 2016; Sameer Kumar et 
al., 2016), e.g. the β-glucans are also known to promote 
butyrogenic bacteria in the colon, thus producing butyrate 
(Friedman, 2016; Han et al., 2020; Jayachandran et al., 2018).

In vivo, it is quite difficult, if not impossible, to disentangle 
the direct effects that the mushroom bioactives have on 
the immune system and those occurring through the 
gut microbiota (such as butyrate production). Effects on 
the gut microbiota are therefore usually tested in vitro, 
using models that mimic the colon. One of these models 
is the TNO in vitro model of the proximal colon (TIM-
2) (Minekus et al., 1999), which is a validated, dynamic, 
computer-controlled system that accurately mimics host 
physiology in the colon with respect to temperature, pH, 
removal of microbial metabolites (mimicking absorption 
through the gut epithelium) and presence of a dense, active 
gut microbiota (Venema, 2015). It has been used extensively 
to test the effect of prebiotics, potential novel prebiotics and 
dietary carbohydrates on gut microbiota composition and 
activity (Larsen et al., 2019; Martina et al., 2019; Miguez et 
al., 2020a,b; Sayago-Ayerdi et al., 2019; Venema et al., 2020).

The aim of the study described here was to investigate the 
potential prebiotic effect of a blend of three mushrooms by 
investigating the effect on composition and activity of the 
gut microbiota. This was studied using the validated TNO 
dynamic in vitro model of the colon (TIM-2). Changes in 
composition (using sequencing of the V3-V4 region of the 
16S rRNA gene) and activity (SCFA production) of the gut 
microbiota of healthy adults upon feeding three different 
doses of the mushroom blend were tested.

2. Materials and methods

Characteristics of the mushroom blend

A proprietary blend of three mushrooms (Ganoderma 
lucidum GL AM P-38, Grifola frondosa GF AM P36 and 
Pleurotus ostreatus PO AM-GP37) was provided by Aloha 
Medicinals (Carson City, NV, USA) as a fine coarse powder.

Predigestion of the mushroom blend

To remove digestible components and components that 
would normally be absorbed in the small intestine, the 
mushroom blend was predigested in bulk. This protocol 
was adapted from Brodkorp et al. (2019) and Minekus et 
al. (2014). However, it included dialysing the digestion 
products using a dialysis unit that is incorporated in TNO 
in vitro model of the stomach and small intestine (TIM-
1) (Minekus et al., 1995). This unique dialysis membrane 
(Sureflux 07 L, Nipro Europe, Zaventem, Belgium) removes 
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digestion products (and water) and prevents them from 
reaching the colon (where they would normally also not 
arrive). After predigestion, this slurry was freeze dried and 
ground to a fine particle size, to get a homogeneous powder, 
which was used in subsequent fermentation experiments 
in TIM-2.

TNO’s in vitro model of the colon (TIM-2)

TIM-2 (Supplementary Figure S1) simulates the large 
intestine or colon, consisting of four interconnected 
compartments containing flexible membranes with a 
volume of 125 ml. By applying pressure on the flexible 
membrane, peristaltic movements are accomplished 
(Venema, 2015). Average conditions of healthy human 
individuals were simulated including: body temperature 
(37 °C), pH in the lumen (pH 5.9), composition and rate 
of secretion fluids, delivery of a predigested substrate, 
mixing and transport of intestinal contents by peristalsis, 
absorption of water and microbial metabolites through the 
means of a dialysis system, and presence of a complex, high 
density, metabolically active and anaerobic microbiota of 
human healthy adults as described in detail before (Venema, 
2015; Venema et al., 2020). The dialysis system is a crucial 
component of the model as it prevents accumulation of 
microbial metabolites, which would otherwise inhibit or 
even kill the members of the gut microbiota. The model 
was inoculated with a standardised microbiota of healthy 
adult human volunteers (Venema et al., 2000). For this, 
faeces were collected from healthy adult volunteers from 
the department (n=6; 3 male, 3 female; average age 25.8±3.2 
years) and pooled in an anaerobic cabinet to allow for a 
standardised microbiota (Venema et al., 2000) that could 
be used throughout the experiments, and allowed for 
comparison between runs. We have shown before, when 
studying carbohydrate fermentation, that pooling the 
microbiota from different individuals leads to a pool with 
the same metabolic capacity as observed in the individual 
samples (Aguirre et al., 2014), likely due to high functional 
redundancy in metabolic capacity of members of the gut 
microbiota (Moya and Ferrer, 2016; Thursby and Juge, 
2017), especially with respect to carbohydrate fermentation 
(Aguirre et al., 2014). The pooled microbiota was aliquoted, 
snap frozen in liquid nitrogen and stored at -80 °C until 
inoculation in the model. Four units were run in parallel. 
After an adaptation period of 16 h, in which the inoculum 
adapted to the conditions in the system (Venema et al., 
2000), the different doses of the substrates were fed to the 
microbiota over a period of 3 days through the feeding 
syringe.

Experimental set-up

Three doses of predigested mushroom blend were 
tested, corresponding to 0.5 g/day, 1 g/day and 1.5 g/day 
of ingestion. The predigested blend was added to the 

standard medium used in TIM-2 (standard ileal efflux 
medium – SIEM; Supplementary Table S1). The predigested 
mushroom blend was added to the standard carbohydrates 
used in the control medium (SIEM). This medium was 
originally developed by Gibson et al. (1988) and mimics 
the complex undigestible carbohydrates (pectin, xylan, 
arabinogalactan, amylopectin and resistant starch) on an 
average Western diet.

Sampling

Samples were taken every day for a period of three days 
from both the lumen and the dialysate of the system (at 0, 
24, 48 and 72 h). Samples from both the lumen and dialysate 
were measured for SCFA concentrations. The production 
of metabolites at the moment of addition of the substrates 
was artificially set to zero, and cumulative production of the 
different SCFAs was calculated from that moment onwards. 
Samples from the lumen of the model were analysed on 
composition of the microbiota by sequencing the V3 – V4 
region of the 16S rRNA gene using Illumina sequencing 
as indicated below.

Short chain fatty acid analyses

Both lumen (1.5 ml) and dialysate (2 ml) samples were 
centrifuged at 14,000×g for 10 min. Fifty μl (lumen) or 150 
μl (dialysate) samples were mixed with 650 μl (lumen) or 
550 μl (dialysate) internal standard solution, containing 
methanol, internal standard (2 mg/ml 2-ethyl butyric 
acid), and formic acid (20%). The analysis was carried 
out on a GC-MS (8890 GC System; Agilent Technolgies, 
Amstelveen, the Netherlands) equipped with a PAL3 RSI 
85 autosampler (Agilent) by injecting 1 μl sample on a 
DB-FATWAX Ultra Inert column (30 m, 0.25 mm, 0.25 
μm Agilent). The temperature settings of the injector port, 
oven, flame-ionization detector and mass spectrometer 
detector were 250, 200, 275 and 225 °C, respectively. The 
flow rate over the column was 1.2 ml|/min.

Illumina MiSeq sequencing of V3-V4 region of the 16S 
rRNA gene

Samples for microbiota composition were analysed by 
sequencing PCR amplicons of the V3-V4 region of the 16S 
rRNA gene. Briefly, the isolation of genomic DNA from the 
faecal samples (1 ml lumen sample) was performed using 
standard molecular biology kits from ZYMO Research 
as provided by the manufacturer (BaseClear, Leiden, the 
Netherlands). The PCR amplification of the V3 and V4 
regions, the barcoding and the library preparation were 
carried out according to established protocols provided 
by Illumina (Nextera XT DNA Library Preparation 
Kit and TG Nextera® XT Index Kit v2 Set A, Illumina, 
Eindhoven, the Netherlands) using the following primers 
341F (5′-CCTACGGGNGGCWGCAG-3′) and the 785R 
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(5 ′-GACTACHVGGGTATCTAATCC-3 ′) appended 
with Illumina adaptor sequences. The sequencing was 
carried out using the Illumina MiSeq system (MiSeq 
Reagent Kit v3, Illumina) and later the sequences were 
converted into FASTQ files using the BCL2FASTQ 
pipeline version 1.8.3. The quality cut was applied based 
on the Phred quality score. Quantitative Insights Into 
Microbial Ecology 2 (QIIME 2) software package (2019.4) 
was used for microbial analyses (Caporaso et al., 2010; 
Estaki et al., 2020). The sequences were classified using 
Greengenes (version 13.8) as a reference 16S rRNA gene 
database.

Statistical analyses

Correlations between Operational Taxonomic Units 
(OTUs) and test-products were investigated using the 
non-parametric Kruskal-Wallis test, by using the software 
package R (3.5.3) (R Core Team, 2013) in RStudio. Multiple 
comparison was corrected using the Benjamini-Hochberg 
false discovery rate (FDR), and q-values (FDR-adjusted 
P-values) were considered significantly different at a cut 
off of <0.1.

3. Results and discussion

Predigested material

After predigestion, most of the protein from the mushroom 
blend was removed. Protein that was left was mostly 
coming from the digestive enzymes added to predigest 
the blend (data not shown). The material, from which 
digestible material was removed through dialysis using 
a membrane used in hospital for kidney-failure patients, 
primarily contained carbohydrates (β-glucans and 
heteropolysaccharides; see below) and material attached 
to cell-wall structures, such as polyphenols, tannins, etc. 
For the purpose of the current study the latter were not 
quantified. Recovery of predigested material was 65% of 
the material that was initially added to the predigestion, 
and the material contained 90% carbohydrates (w/w), and 
5% protein (w/w) (data not shown).

TIM-2 set-up

To study the potential prebiotic effects of the blend of 
three mushrooms, the effect of the blend on gut microbiota 
composition and activity was evaluated in TIM-2. As most 
carbohydrates are fermented in the proximal part of the 
colon, the model mimicked the conditions in the ascending 
colon. After an overnight adaptation period, in which the 
SIEM (Cuevas-Tena et al., 2019) was fed, the predigested 
mushroom blend was fed to the standardised microbiota in 
TIM-2 at 0 (SIEM only), 0.5 g/day, 1.0 g/day and 1.5 g/day 
for a period of 3 days. The blend was added to SIEM. Each 
day samples were taken from the lumen and dialysate of 

TIM-2 and changes in microbiota composition and activity 
were measured.

Changes in microbiota composition

Changes in composition of the microbiota were evaluated 
by sequencing amplicons of the V3-V4 region of the 16S 
rRNA gene. Since a standardised microbiota was used, 
all experiments started with the same composition at 
time point zero, as can be seen by the close clustering 
in the weighted UniFrac principal coordinate analysis 
(Supplementary Figure S2A), a measure for beta-diversity. 
Over time, the units fed with the mushroom blend moved 
away from those fed with SIEM only in the weighted 
UniFrac (Supplementary Figure 2B) indicating changes 
in composition at the genus level (see below). There were 
no differences at phylum level (Supplementary Figure S3).

Using the non-parametric Kruskal-Wallis test, we studied 
which operational taxonomic units (OTUs), at the level of 
bacterial genera, were different between treatments. This 
was done at the level of the individual ‘interventions’ (each 
dose of mushroom blend separately), as well as grouping the 
three doses together and looking at the level of ‘substrate’ 
(control vs mushroom blend). After correction for multiple 
comparison, we apply a strict cut-off for significance. 
For q-values <0.1 (the corrected P-value after correction 
for multiple comparisons using false-discovery rate) we 
consider the difference to be significant, and for a q-value 
between 0.2 and 0.1 as a trend. Figure 1A-E shows the 
OTUs that are significantly different when looking at the 
individual doses. The plots with OTU names in green show 
a q-value <0.1, while those with names in orange have a 
q-value between 0.1 and 0.2. The latter are shown as well, 
because some of these become significant when all three 
doses of the mushroom blend are grouped together (Figure 
1F-I). The data show a significant difference for Pediococcus 
when tested at the individual doses, which can be attributed 
to its increase at the highest dose of mushroom blend tested. 
If all doses are grouped together, the significance is lost 
(data not shown). The other OTUs, Lachnospiraceae UCG-
004, Lachnoclostridium and the two Ruminococcaceae 
(UCG-002 and NK4A214-group) are all dose-dependently 
increased when the mushroom blend is fed (significant for 
Lachnospiraceae UCG-004 and Ruminococcaceae UCG-
002; trend for the others). This is interesting, because these 
OTUs are well-known butyrate producers. When examining 
the difference at the level of all three doses of mushroom 
blend combined (Figure 1F-I), the butyrate producing OTUs 
Lachnoclostridium and Ruminococcaceae NK4A214 also 
become significant. The boxplots show all time-points 
(T24, T48 and T72) together. Supplementary Figure S4 
shows the development of the relative abundance at the 
individual time-points for Lachnospiraceae UCG-004, 
Lachnoclostridium and the two Ruminococcaceae (UCG-
002 and NK4A214-group). This data shows that these taxa 
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(dose-dependently) increase over time compared to the 
condition with SIEM, where these taxa stay more or less 
at the same abundance or decrease over time.

Production of microbial metabolites

Apart from composition of the microbiota, we also studied 
its activity. The major microbial metabolites that have been 
implicated in health are the SCFA (acetate, propionate and 
butyrate). Especially butyrate has attracted attention over 
the past decades as it has been shown to be the primary 
substrates for the colonocytes, epithelial cells of the colon, 
and has been shown to be beneficial in inflammation in 
the gut, due to its effects on gene-expression in immune 
and other host cells (Hamer et al., 2008).

Figure 2 shows the cumulative SCFA production when 
the various interventions are fed to the gut microbiota. 
The profile on the control medium (SIEM) shows that 
acetate is the major SCFA produced. In vivo the ratio of 
acetate:propionate:butyrate is in the order of 60%:20%:20% 
(Cummings et al., 1987). For SIEM this is also observed in 
TIM-2 (Table 1). The cumulative amount of total SCFA 
produced after the 3-day experiment is 143.8 mmol (Table 
2). No differences in production of BCFA was observed 
(data not shown).

Strikingly, but entirely in line with the increase in relative 
abundance of the butyrate producing OTUs in Figure 1, 
upon feeding the three different doses of the mushroom 
blend, a dose-dependent increase in butyrate proportion 
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is observed (Table 1). The ratio of butyrate at the lowest 
dose of the mushroom blend is 42.4% (compared to 27.0% 
of the control medium), and this increases to 45.1% for 
the medium dose, and 53.1% for the high dose. The latter 
is almost 2-fold that produced on the control medium. 

Also, the proportion of propionate increases, but not dose-
dependently, and is 27-30%. Of course, if the proportions of 
butyrate and propionate increase, the proportion of acetate 
has to drop (Table 1). With the changes in proportion of the 
individual SCFA towards more propionate and butyrate, 
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Figure 2. Cumulative production of the short chain fatty acid (SCFA) acetate, propionate and butyrate on the different interventions. 
M0.5, M1.0 and M1.5: mushroom blend at 0.5 g/day, 1.0 g/day and 1.5 g/day, respectively. SIEM: simulated ileal efflux medium. 
Error bars indicated range.

Table 1. Ratio of the different short chain fatty acids (SCFA) 
at time point 72.1

Intervention/ 
metabolite

Acetate Propionate Butyrate

SIEM 53.3±0.5% 19.8±0.2% 27.0±0.3%
M0.5 29.8±11.5% 27.8±4.1% 42.4±7.4%
M1.0 24.8±14.4% 30.1±5.3% 45.1±9.1%
M1.5 19.1±8.7% 27.8±4.5% 53.1±14.3%

1 M0.5, M1.0 and M1.5: mushroom blend at 0.5 g/day, 1.0 g/day and 1.5 
g/day, respectively; SIEM: simulated ileal efflux medium, control.

Table 2. Amount of total short chain fatty acids (SCFA) (mmol) 
and amount of carbon (C) in the microbial metabolites at time 
point 72.1

Intervention/sum of 
metabolites

Total SCFA (mmol) Amount of C

SIEM 143.8±1.4 365.3±3.4
M0.5 118.0±1.7 369.0±5.4
M1.0 115.6±2.0 370.3±6.3
M1.5 126.4±3.3 422.3±16.9

1 M0.5, M1.0 and M1.5: mushroom blend at 0.5 g/day, 1.0 g/day and 1.5 
g/day, respectively; SIEM: simulated ileal efflux medium, control.

Heruntergeladen von Brill.com 10/13/2024 10:29:13AM
via Open Access. This content is licensed under the CC-BY-NC-SA license. For

more information see http://creativecommons.org/licenses/by-nc-sa/4.0
http://creativecommons.org/licenses/by-nc-sa/4.0

http://creativecommons.org/licenses/by-nc-sa/4.0


 Mushrooms increase gut microbial butyrate production

Beneficial Microbes 12(6) 607

the sum of SCFA produced is reduced (Table 2), from 143.8 
mmol at T72 for the control down to 118 mmol for the 
low dose mushroom blend, 115.6 for the middle dose, and 
126.4 for the high dose. Although it seems that on the 
mushroom blend the production of SCFA is thus lower, this 
is skewed by the fact that acetate only contains 2 carbon-
atoms, while butyrate contains 4 (and propionate 3). So, 
for every molecule of butyrate twice the number of carbon-
atoms are needed than for acetate. If we take that into 
consideration, then rather than a reduction in amount 
when expressed as mmol, a small increase is observed when 
expressed in amount of carbon (C) (Table 2). Of course not 
all C-atoms end up in SCFA, and the results should not be 
considered an attempt to make a mass-balance, but we have 
shown before from 13C-labeled substrates that 95% of the 
labelled C got incorporated in SCFA (Binsl et al., 2010; de 
Graaf et al., 2010).

It is unlikely that the almost two-fold increase in butyrate 
proportion can only be attributed to the increases observed 
in relative abundance of the four butyrate producing taxa. 
Collectively, in the high dose mushroom blend, these make 
up approximately 11% of the observed OTUs, while this 
is 7 to 8% in the other doses. Although it is possible that 
these taxa are modulated by the mushroom blend to such 
an extent that their metabolism is geared primarily towards 
butyrate production, it is likely that other taxa, although 
not significantly modulated in their relative abundance, 
contribute to the observed changes in butyrate production. 
There are some (non-significant) dose-dependent increases 
in relative abundance of Ruminococcus gauvreauii-group, 
Ruminococcaceae UCG-008, Dorea, an uncharacterised 
genus in Lachnospiraceae, and an uncharacterised genus in 
Erysipelotrichaceae, that together also account for 2% (low 
dose) to 5.6% (high dose) of the total relative abundance. 
It is also possible that the metabolism of other butyrate 
producers is shifted, without affecting their relative 
abundance. The conclusions drawn here are based on 
relative abundance. Although in the current experiments 
we did not quantitatively measure total bacteria, in previous 
experiments we have shown that the total number of 
bacteria remain relatively constant in the model, because 
we removed an appropriate amount of volume from the 
system daily to simulate passage to the distal colon (or 
‘going to the bathroom’). The results obtained here are 
therefore indeed likely the result of a reduction in acetate/
propionate producers as well as an increase in butyrate 
producers. However, as mentioned above we cannot 
exclude that the metabolism of certain taxa changed (from 
acetate/propionate to butyrate), without major shifts in 
composition. Future studies with 13C-labelled substrates, 
similar to the ones done by us and others before, might 
shed a light on that (Binsl et al., 2010; de Graaf et al., 2010; 
Lamichhane et al., 2018).

In general, ruminococci (including Ruminococcaceae 
UCG-002 and NK4A214-group) are stimulated by 
dietary fibre (e.g. (De Angelis et al., 2015; Reider et al., 
2020)). The Ruminococcus gauvreauii-group has been 
shown before to be stimulated by fibres (e.g. Long et al., 
2020) and is not inhibited by polyphenols (Firrman et al., 
2016). In addition, recently it was shown that members 
of the family Lachnospiraceae are stimulated by dietary 
fibre, but depending on the source of fibre (Shang et al., 
2021). Similarly, Lachnoclostridium has been shown to 
be stimulated by some dietary fibres (wheat bran and 
levan; Adamberg et al., 2018; Shang et al., 2020), but not 
by others (type 2 resistant starch; Zhang et al., 2020). 
Also Dorea is stimulated by dietary fibre (e.g. Chen et al., 
2020a) and polyphenols (e.g. Kilua et al., 2020). Moreover, 
also Erysipelotrichaceae has been shown to be stimulated 
by fibre intake (e.g. Lamichhane et al., 2018), and in this 
study with 13C-labelled polydextrose was correlated with 
increased SCFA production.

Fungi are remarkable for the variety of high-molecular-
weight polysaccharide structures that they produce, which 
are found in all parts of the mushroom (e.g. Wachtel-Galor 
et al., 2011; Yang et al., 2019). Most studies that investigated 
the effects of medicinal mushrooms on gut microbiota 
composition and/or activity have used the purified 
polysaccharides and animal models. Moreover, very few 
studies have looked at the (potential synergistic) effects 
of mushroom blends. For instance, the polysaccharide of 
one of the mushrooms in the blend G. lucidum, has been 
tested in various rodent models (mice, rats and hamsters) 
for the effect on gut microbiota modulation, usually 
with the primary aim to look at immuno-modulation, 
using polysaccharide purified either from spores or from 
mycelium (Chen et al., 2020b; Jin et al., 2019; Khan et al., 
2019; Su et al., 2018; Tong et al., 2020; Xie et al., 2019). 
G. lucidum has been shown to contain linear and branched 
β-glucans (Liu et al., 2017), including a highly branched 
β-glucan found in G. lucidum spores (Wang et al., 2017). 
Although the main polysaccharide present in G. lucidum is 
composed of glucose, other monosaccharides were found 
in varying proportions, such as arabinose, galactose, xylose 
and mannose, suggesting the presence of polysaccharides 
with different chemical structures. Heterogalactans 
composed of rhamnose, galactose and glucose, and side 
chains composed of glucose have been described (Pan 
et al., 2012; Ye et al., 2008). Moreover, other isolated 
fractions, like oil (Wu et al., 2020) and the triterpenoid 
ganoderic acid A (Guo et al., 2020b) have been shown to 
modulate the rodent gut microbiota. Similarly, the purified 
polysaccharide of G. frondosa has been shown to modulate 
the gut microbiota in rodents (mice and rats) in conjunction 
with beneficial changes in glucose metabolism and lipid 
metabolism disorders (Chen et al., 2019; Guo et al., 2020a; 
Li et al., 2019a,b; Pan et al., 2018, 2020). β-glucans, but 
also α-glucans are known to be the main component of 
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G. frondosa, but also a heteropolysaccharide composed 
of (1→6)-α-D-Galp with O-2 linked residues of α-Manp 
α-Fucp have been found (Jayachandran et al., 2018; Ruthes 
et al., 2016). Regarding the chemical structure of P. ostreatus 
polysaccharides, β-glucans are the most prevalent, as well 
as best studied component of P. ostreatus. This mushroom 
was also found to have glucogalactan →1)-α-D-Galp-(→6 
with residues of β-L-Glcp at non-reducing ends (Ruthes 
et al., 2016). The effect of P. ostreatus polysaccharides 
on the gut microbiota composition has been tested in 
piglets and chickens (Adams et al., 2019; Robinson et 
al., 2018) and on gut microbiota metabolic activity in in 
vitro batch fermentations using human inocula (Boulaka 
et al., 2020; Mitsou et al., 2020). Despite the limitations 
of such batch fermentations, such as accumulations of 
microbial metabolites, leading to inhibition and/or death 
of the microbiota, one of these studies found increased 
proportions of butyrate with feeding of P. ostreatus (Mitsou 
et al., 2020), although the increase was not as evident as 
observed in our fermentations in a dynamic in vitro model 
with the blend of mushrooms.

To our knowledge whole mushrooms, let alone blends of 
different mushrooms, have not been tested frequently. 
Rather purified fractions, mostly the polysaccharide 
fraction, have been investigated. In our experiments, 
in a validated in vitro model of the proximal colon, that 
closely mimics physiological conditions in humans, and 
which has been used for three decades in research on 
gut microbiology, we show that the blend of G. lucidum, 
G. frondosa and P. ostreatus has a beneficial effect on gut 
microbiota composition and activity. The amount of extract 
used would equal 5-15 gram of fresh mushrooms (taking 
on average a water-content of 90%). Given that the model 
is roughly scaled to the in vivo situation, one would expect 
5-15 g of mushroom ingestion to have the same effect in 
vivo. A number of butyrate producing taxa are increased in 
relative abundance, which is accompanied by an increase 
in butyrate proportion. As butyrate is considered to be 
one of the microbial metabolites that contributes to 
health, by increasing barrier function and modulating 
inflammation, it would be good to reproduce these results 
in a clinical trial.
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Table S1. Composition of the simulated ileal efflux medium 
as originally composed by Gibson et al. (1988).
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